

AIRS Calibration Update

Steve Broberg

AIRS Science Team Meeting April 5th, 2019

AIRS Cal Team:

Larrabee Strow*, Evan Manning, George Aumman, Thomas Pagano, Chris Wilson**

Jet Propulsion Laboratory, California Institute of Technology

*UMBC **Raytheon

© 2019 California Institute of Technology. Government sponsorship acknowledged.

State of the L1B

- It hasn't changed it is called "v5", but the calibration core, its coefficients, have not changed since launch.
- Same calibration across 5 presidential terms (17 years and counting)
 - At least one more to go the A train exit and extended mission starts in 2022.
- Characteristics
 - One set of static coefficients for each channel.
 - Good to about .1 to .2 K absolute for typical scenes
 - Each of the 2378 channels is an "independent" radiometer some behave better than others
- Why consider a change now?
 - Absolute cal is worse for extreme cold scenes
 - Time dependent changes have been observed
 - New coefficients have reduced uncertainty estimates
- Some issues are best addressed in L1B, some in the L1C product, some in between

Session Talks

- AIRS Frequency Drift and Doppler Correction Strow
- Trends in the L1B V5 Aumann
- Possible Shortwave Contamination in AIRS due to Near Field Response Wilson
- The L1B v7 Lien List Aumann
- AIRS Calibration Updates for Climate Benchmarking Pagano

A Reminder of What We are Calibrating

11 Entrance Filters x 12 modules x 2378 detectors

Module Dependent Spectral Trends (Strow)

Modules M-04a and M-04c are experiencing different spectral shifts than all other modules – this was not expected

Modules M-04a (and c) also shows an unusual offset and drift the 2014 cooler anomaly and FPA warm up – also not expected

Why would M4 A and C move similarly?

11 Entrance Filters x 12 modules x 2378 detectors

Similar offset/drift seen in radiometric gains

It turns out M4 A&C were mounted on the same substrate

AIRS Detector Noise

Number of AIRS channels with NE Δ T < 1K

2014-03-22 Cooler A 58K->>107K 2016-09-25 Cooler A 58K-> 68K

"image" view of NEDT, channel vs. time

© 2019, All rights reserved. California Institute of Technology Government sponsorship acknowledged

NASA

Level 1C

- Beta version ("v6")
 - cleans noisy and known bad detectors, fills spectral gaps
 - 2645 frequencies vs. 2378 in L1B
 - Has been available at the GES DISC as a 1 month rolling window
- V6.6: to be released shortly, adds:
 - spectral model from Strow
 - spectral resampling (to fixed grid)
- V7: Potential Improvements include:
 - improved buddy first-pass replacement
 - improved outlier detection
 - estimate of fill value "goodness"
 - better PCA training set from UMBC
 - better scene inhomogeneity (Cij) metrics/handling (PC 100 current, PC 20, MODIS, other?)

Possible correction for optical contamination induced change in Near Field Response

L1B Lien List (Manning version)

Name	V5 worst-case magnitude 200-330 K	V5 worst case magnitude 200 K	V5 worst case magnitude 250 K	V5 worst case magnitude 300 K	L1B/L1C fix?
Cij	> 15 K for a few channels in a very few cases		worst near 250 K from scenes that are half hot & half cold.		v6 L1C rough fix with PCs.
M-08 A/B Cold	0.5 K (up to 1 K for 192 K)	0.5K near 850 cm-1 2004	0.2 K	N/A	L1C empirical fix is possible in future
M-08 A/B Hot	0.15 K	N/A	0.2 K	0.15 K	L1B or L1C recalibration with A vs B EOBC. L1C empirical fix
Other module A/B	0.2 K	0.2 K M-10			L1C empirical fix is possible
SW trend	5 K over 15 years	+5 K over 15 years	+0.3 K over 15 years	Probably less than 0.1 K over 15 years	
Module bounds	0.3 K	0.3 K right minus left M-09 vs M-08	0.03 K right minus left M-01A vs M-02A		v7j will likely fix
M-05/6 trend	0.3 K	+0.3 K	< 0.05 K. Possibly negative.	+0.1 K	v7j will likely fix
shortwave south pole spaceview contamination	0.2 K				Exclude SVs in future L1B. First-order fix in L1C radiometric recal.
M8 A/B fangs	0.2 K	-0.2 K B-A	-0.1 K B-A	-0.06 K B-A	No
M8 FOV 32 bump	0.15 K	+0.15 K B-A	+0.1 K B-A	+0.05 K B-A	No
M5 FOV 38 feature	0.03 K	+0.03 K M5-other	0	-0.02 K M5-other	No

Candidate L1B update

- New coefficient characteristics
 - Physics based improvement of the polarization coefficients (i.e., not based on comparisons to other instruments or earth scene/model references, uses mission long analysis of AIRS space view response
 - Separate A and B side nonlinearity coefficients
 - 4 space views handled differently
 - disparities at module boundaries reduced
 - reduced left/right asymmetry
 - changes < the 0.2K uncertainty
 - these changes are primarily static (bias)
 - there are time dependent polarization factor, phase terms
 - but do not address majority of time dependent trends seen

Level 1B PGE implementation changes

- Increase precision of radiances
- Spectral estimate per granule (Bob Deen version)
- Spectral estimate per scan (newer Strow model new version may need refinements)
- Non-gaussian noise characterization
- Pop/moon detection dynamic thresholds (monthly files vs. 6 minute granules?)
- Clear, SO₂, and dust flags (new algorithms, include in L1B?)
- Scene homogeneity ("C_{ij}") improve metrics
- Handling of new calibration coefficients (A/B independent, time dependent polarization)
- New output formats (netcdf)

AIRS Product Flow

Layer 1

- Product Delivered Upon Query
- New Test Report
- Full Mission Reprocessed or On-Demand for L2 SFP
- Updated User Guides
- Public Release Announcement

Layer 2

- Separate DAAC Access
- Full Test Report
- · Full Mission Reprocessed
- Legacy User Guide Update
- No Public Announcement

Layer 3

- Separate DAAC Access
- No Add'l Testing or Documents
- Forward Processing Ends Upon V7 Release

Aqua and AIRS Expected to Function Beyond 2022 A-Train Exit

- Post-2022 orbit will have a thermal impact on AIRS specifically, the 2nd stage heater will need to draw more power to maintain the spectrometer temperature set point
- Safety and thermal/calibration impact being assessed with spacecraft and instrument models
- · AIRS has shown no signs of degradation and is expected to last the life of the spacecraft

- A-Train exit (lowering) maneuvers to 680 km: March-May 2022
- Actual fall to earth in mid 2040s

(Charts courtesy of EOS Flight Dynamics Team)

16

Wrap up

- Radiometric calibration has not been fundamentally changed since launch
- · We have a laundry list of known issues
- Our mission:
 - document
 - measure (Special tests: OBC float. A/B independent data? Other?)
 - fix/mitigate if possible
- L1C v6.6 will add interpolation to a fixed frequency grid available for the entire mission
- L1B v7 calibration coefficients have been developed
 - Uses a physics based improvement of the coefficients (i.e., not based on comparisons to other instruments or earth scene/model references).
- L1B process improvements (precision, file formats)
- NFR analysis indicates there is potential to address additional time dependent artifacts (not in L1B, but perhaps as a pre-processor to L1C)
- Regarding channel quality, what measures would you find useful?